Outline

- Part 1: Motivation
- Part 2: Probabilistic Databases
- Part 3: Weighted Model Counting
- Part 4: Lifted Inference for WFOMC

Ũ

- Part 5: Completeness of Lifted Inference
- Part 6: Query Compilation
- Part 7: Symmetric Lifted Inference Complexity
- Part 8: Open-World Probabilistic Databases
- Part 9: Discussion & Conclusions

Question 2. Are lifted rules stronger than grounded?

Alternative to lifting:

- 1. Ground the FO sentence
- 2. Do WMC on the propositional formula
- There is no reason why grounded inference should be weaker than lifted inference
- However, <u>existing</u> grounded algorithms are strictly weaker than lifted inference

Algorithms for Model Counting

[Gomes'08] Based on full search DPLL:

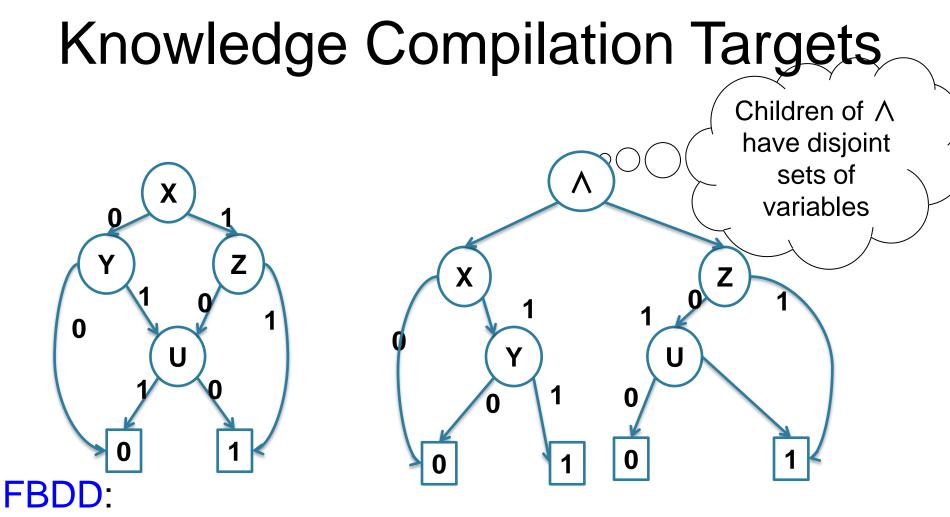
- Shannon expansion. #F = #F[X=0] + #F[X=1]
- Caching.
 Store #F, look it up later
- Components. If Vars(F1) ∩ Vars(F2) = Ø: #(F1 ∧ F2) = #F1 * #F2

Knowledge Compilation

Definition (informal): represent the Boolean formula F in a circuit where WMC(F) is in PTIME in the size of the representation

Why we care:

- The trace of any inference algorithm is a knowledge compilation
- Lower bounds on size(KC) give lower bounds on the algorithm's runtime



Decision-, sink-nodes

OBDD: fixed variable order

Decision-DNNF add: ∧-nodes

[Huang&Darwiche'2005]

DPLL and Knowledge Compilation

Fact: Trace of full-search DPLL \rightarrow KC:

Basic DPLL

 \rightarrow decision trees

- DPLL + caching

 → OBDD (fixed variable order)
 → FBDD
- DPLL + caching + components
 → decision-DNNF

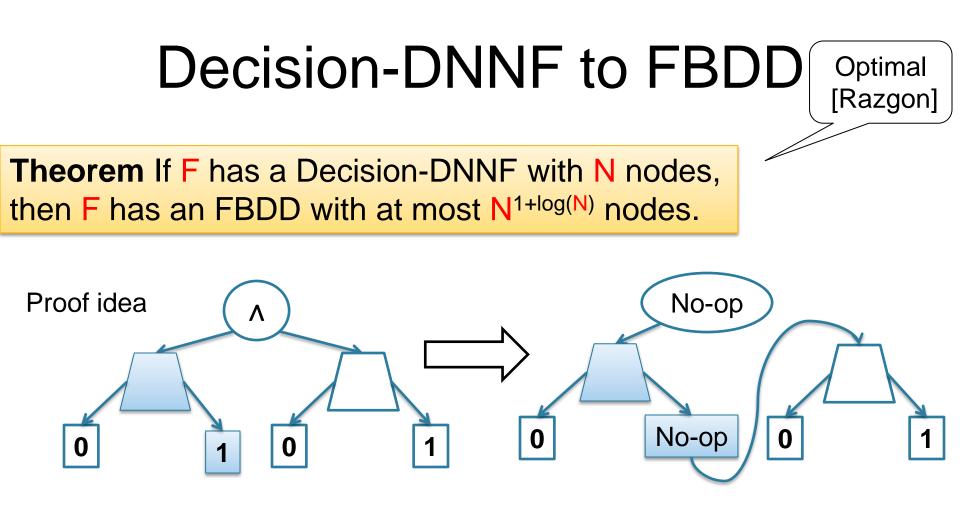
Hard Queries

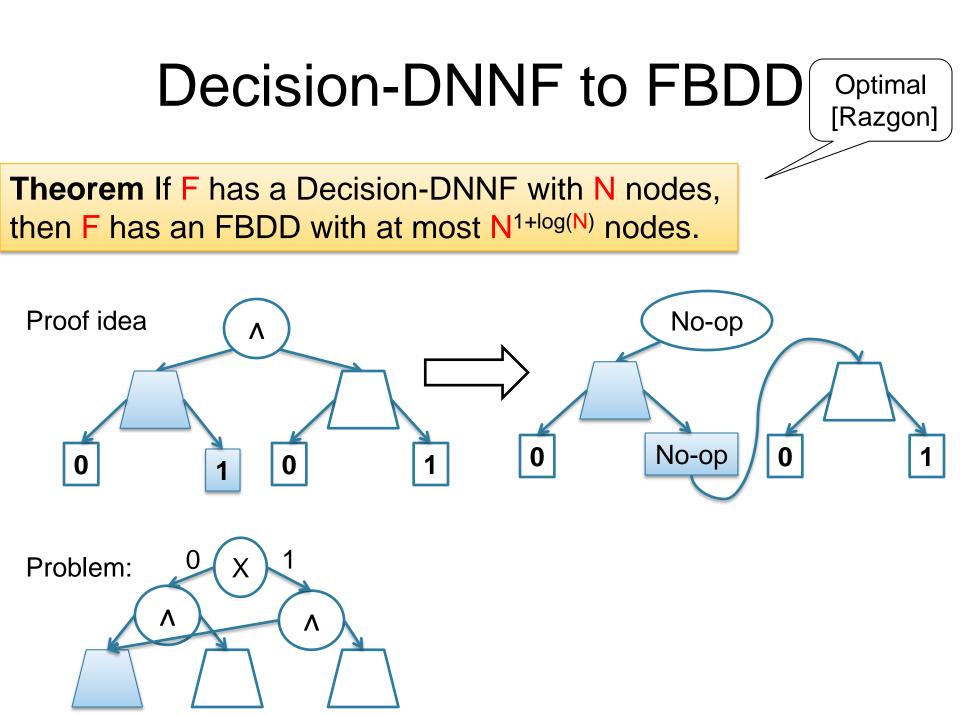
 $H_0 = \forall x \forall y (R(x) \lor S(x,y) \lor T(y)) = non-hierarchical$ $H_k = hierarchical, has inversion, for k ≥ 1$

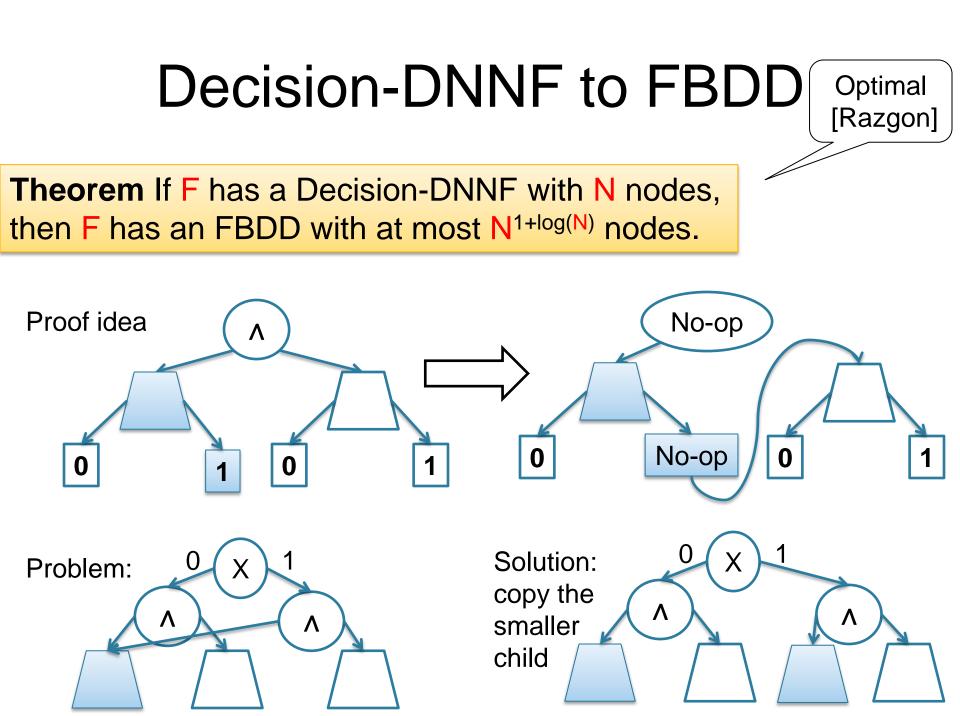
Grounded Boolean formulas: $F_n(H_0) = \Lambda_{i \in [n], j \in [n]} (R_i \lor S_{ij} \lor T_j)$

Th. [Beame'14] Any FBDD for $F_n(H_k)$ has size $\geq 2^{n-1}/n$. Same holds for any non-hierarchical query.

What about Decision-DNNFs?







Hard Queries

Corollary Any Decision-DNNF for $F_n(H_k)$ has size $2^{\Omega(\sqrt{n})}$ Same holds for any non-hierarchical query.

Proof. N-node Decision-DNNF to N^{1+log(N)} nodes FBDD.

$$\begin{split} &\mathsf{N}^{1+\log(\mathsf{N})} > 2^{\mathsf{n}\cdot 1}/\mathsf{n} \ ,\\ &\log(\mathsf{N}) + \log^2(\mathsf{N}) > \mathsf{n} - 1 - \log(\mathsf{n}) \\ &\log^2(\mathsf{N}) = \Omega(\mathsf{n}) \\ &\log(\mathsf{N}) = \Omega(\sqrt{\mathsf{n}}) \end{split}$$

Lifted v.s. Grounded Inference

	Non-hierarchical Q (e.g. H ₀)
Lifted P(Q)	#P-hard
Grounded P(F _n (Q))	2 ^{Ω(√n)}

What about hierarchical queries ?

Inversion-Free Queries

Definition An inversion in Q is a sequence of co-occurring vars:

 $(x_0, y_0), (x_1, y_1), \dots, (x_k, y_k),$ such that:

- $at(x_0) \not\subseteq at(y_0)$, $at(x_1)=at(y_1)$,..., $at(x_{k-1})=at(y_{k-1})$, $at(x_k) \not\supseteq at(y_k)$
- For all i=1,...,k-1 there exists two atoms in Q of the form: S_i(...,x_{i-1},...,y_{i-1},...) and S_i(...,x_i, ..., y_i, ...)

Inversion-free implies hierarchical, but converse fails

$$Q = [R(x_0) \lor S(x_0, y_0)] \land [S(x_1, y_1) \lor T(x_1)]$$

Inversion-free

Inversion

 $H_1 = [R(x_0) \vee S(x_0, y_0)] \land [S(x_1, y_1) \vee T(y_1)]$

Easy Queries

[Jha&S.11], [Beame'15]

Theorem Let Q in ∀FO^{un}

- 1. If Q has inversion then OBDD for $F_n(Q)$ has size $\geq 2^{n-1}/n$
- 2. Else, $F_n(Q)$ has OBDD of width $2^{\#atoms(Q)}$ (size O(n))

```
Proof (part 2 only - next slide)
```

Easy Queries

[Beame&Liew'15] Extended to SDD. Thus, over ∀FO^{un}, OBDD ≈ SDD

[Jha&S.11], [Beame'15]

Theorem Let Q in ∀FO^{un}

- 1. If Q has inversion then OBDD for $F_n(Q)$ has size $\geq 2^{n-1}/n$
- 2. Else, $F_n(Q)$ has OBDD of width $2^{\#atoms(Q)}$ (size O(n))

```
Proof (part 2 only - next slide)
```


[Bova'16] SDD more succint than OBDD (HWB)

[Beame&Liew'15] Extended to SDD. Thus, over ∀FO^{un}, OBDD ≈ SDD

[Jha&S.11], [Beame'15]

Theorem Let Q in ∀FO^{un}

- 1. If Q has inversion then OBDD for $F_n(Q)$ has size $\geq 2^{n-1}/n$
- 2. Else, $F_n(Q)$ has OBDD of width $2^{\#atoms(Q)}$ (size O(n))

```
Proof (part 2 only - next slide)
```

$\mathsf{Q} = [\mathsf{R}(x) \lor \mathsf{S}(x,y)] \land [\mathsf{T}(x') \lor \mathsf{S}(x',y')]$

 $\mathsf{Q} = [\mathsf{R}(x) \lor \mathsf{S}(x,y)] \land [\mathsf{T}(x') \lor \mathsf{S}(x',y')]$

$$n = 2$$

$$\Pi = R_1 T_1 S_{11} S_{12} R_2 T_2 S_{21} S_{22}$$

$$x = 1$$

$$x = 2$$

$$C_1 = R(x) \lor S(x,y) \qquad \land C_2 = T(x') \land S(x',y') = Q = [R(x) \lor S(x,y)] \land [T(x') \lor S(x',y')]$$

$$n = 2$$

$$\Pi = R_1 T_1 S_{11} S_{12} R_2 T_2 S_{21} S_{22}$$

$$x = 1$$

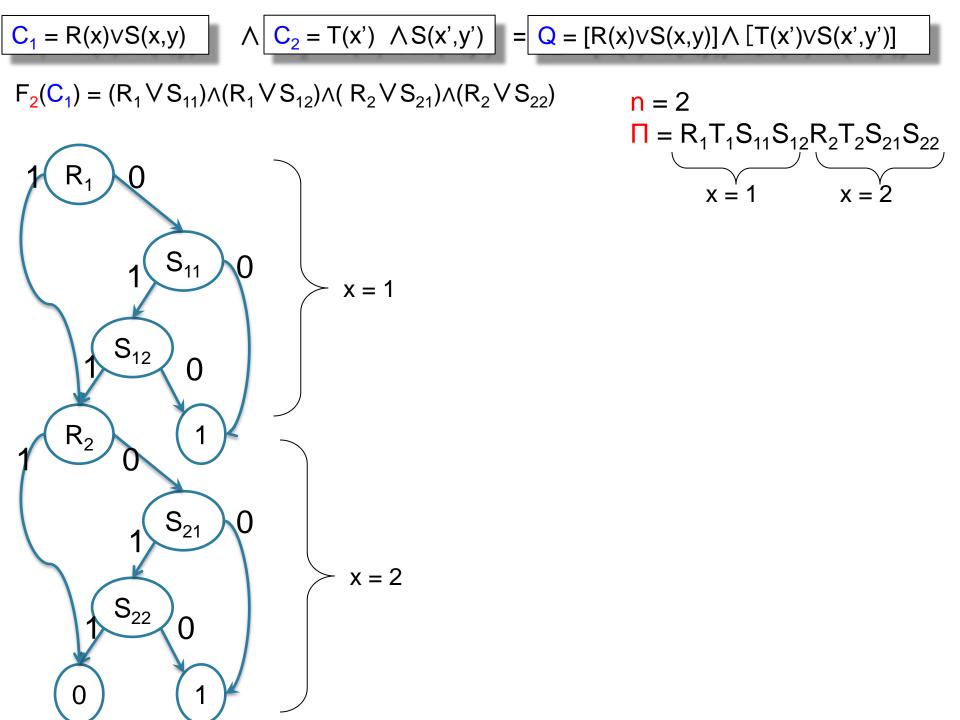
$$x = 2$$

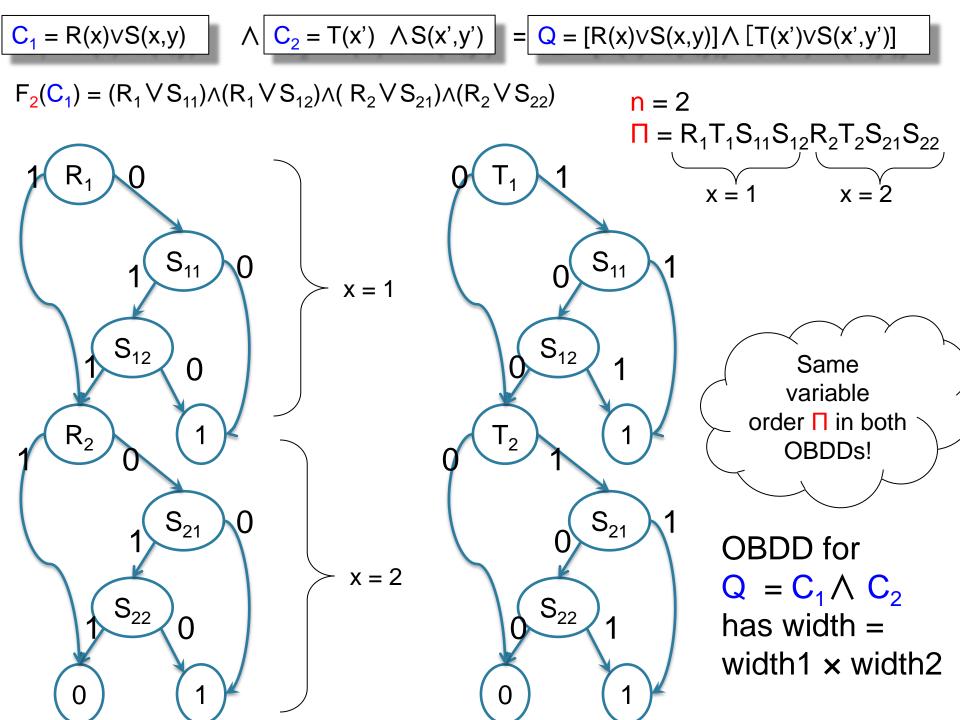
$$C_{1} = R(x) \vee S(x,y) \qquad \wedge \boxed{C_{2} = T(x') \wedge S(x',y')} = \boxed{Q = [R(x) \vee S(x,y)] \wedge [T(x') \vee S(x',y')]}$$

$$F_{2}(C_{1}) = (R_{1} \vee S_{11}) \wedge (R_{1} \vee S_{12}) \wedge (R_{2} \vee S_{21}) \wedge (R_{2} \vee S_{22}) \qquad n = 2$$

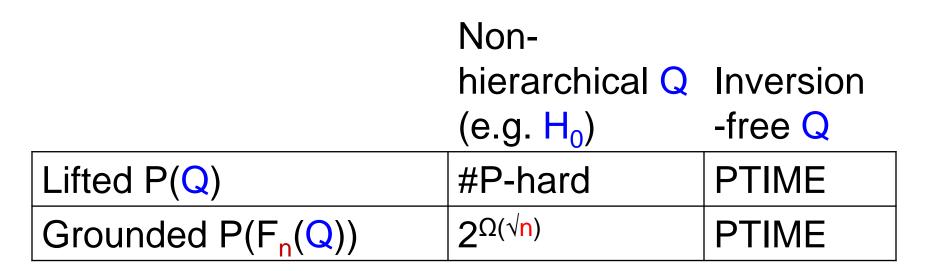
$$\prod = R_{1}T_{1}S_{11}S_{12}R_{2}T_{2}S_{21}S_{22}$$

$$x = 1 \qquad x = 2$$





Lifted v.s. Grounded Inference



Easy/Hard Queries

Main result: a class of queries Q such that:

- Lifted inference: P((Q)) in PTIME
- Grounded inference: P(F_n(Q)) exponential time

Significance: limitation of DPLL-based algorithms for model counting

$$\begin{split} & \mathsf{H}_{\mathsf{k0}} = \ \forall x \forall y \ \mathsf{R}(x) \lor \mathsf{S}_1(x,y) \\ & \mathsf{H}_{\mathsf{k1}} = \ \forall x \forall y \ \mathsf{S}_1(x,y) \lor \mathsf{S}_2(x,y) \\ & \mathsf{H}_{\mathsf{k2}} = \ \forall x \forall y \ \mathsf{S}_2(x,y) \lor \mathsf{S}_3(x,y) \\ & \cdots \\ & \cdots \\ & \mathsf{H}_{\mathsf{kk}} = \ \forall x \forall y \ \mathsf{S}_{\mathsf{k}}(x,y) \lor \mathsf{T}(y) \end{split}$$

$$\begin{split} H_{k0} &= \forall x \forall y \ R(x) \lor S_1(x,y) \\ H_{k1} &= \forall x \forall y \ S_1(x,y) \lor S_2(x,y) \\ H_{k2} &= \forall x \forall y \ S_2(x,y) \lor S_3(x,y) \\ \cdots \\ H_{kk} &= \forall x \forall y \ S_k(x,y) \lor T(y) \end{split}$$

$$f(Z_0, Z_1, ..., Z_k) = a$$
 Boolean
function

$$\begin{array}{l} \mathsf{H}_{k0} = \ \forall x \forall y \ \mathsf{R}(x) \lor \mathsf{S}_{1}(x,y) \\ \mathsf{H}_{k1} = \ \forall x \forall y \ \mathsf{S}_{1}(x,y) \lor \mathsf{S}_{2}(x,y) \\ \mathsf{H}_{k2} = \ \forall x \forall y \ \mathsf{S}_{2}(x,y) \lor \mathsf{S}_{3}(x,y) \\ \cdots \\ \mathsf{H}_{kk} = \ \forall x \forall y \ \mathsf{S}_{k}(x,y) \lor \mathsf{T}(y) \end{array} \left[\begin{array}{c} \mathsf{f}(\mathsf{Z}_{0}, \ \mathsf{Z}_{1}, \ \ldots, \ \mathsf{Z}_{k}) = a \ \mathsf{Boolean} \\ \mathsf{function} \\ \mathsf{function} \end{array} \right]$$

$$\begin{array}{l} H_{k0} = \ \forall x \forall y \ R(x) \lor S_1(x,y) \\ H_{k1} = \ \forall x \forall y \ S_1(x,y) \lor S_2(x,y) \\ H_{k2} = \ \forall x \forall y \ S_2(x,y) \lor S_3(x,y) \\ \cdots \\ H_{kk} = \ \forall x \forall y \ S_k(x,y) \lor T(y) \end{array} \right] f(Z_0, Z_1, \ldots, Z_k) = a \text{ Boolean} \\ f(unction) \\ f(unction) \\ g(x_1, \ldots, X_k) = a \text{ Boolean} \\ f(x_1, \ldots, X_k) = a \text{$$

Examples:

 $f = Z_0 \wedge Z_1 \wedge ... \wedge Z_k$ then $f(H_{k0}, H_{k1}, ..., H_{kk}) = H_k$

 $f = Z_0 \wedge Z_2 \vee Z_0 \wedge Z_3 \vee Z_1 \wedge Z_3$ then $f(H_{30}, H_{31}, H_{31}, H_{33}) = Q_W$

Easy/Hard Queries

[Beame'14]

Theorem For any Boolean function $f(Z_0, Z_1, ..., Z_k)$, denoting $Q = f(H_{k0}, H_{k1}, ..., H_{kk})$:

- Any FBDD for $F_n(Q)$ has size $2^{\Omega(n)}$
- Any Decision-DNNF has size $2^{\Omega(\sqrt{n})}$.

Consequence:

- Lifted inference computes compute P(Q_W) in PTIME
- Any DPLL-based algorithm takes time $2^{\Omega(\sqrt{n})}$

Many other queries are like Q_W

Lifted v.s. Grounded Inference

	Non- hierarchical Q (e.g. H ₀)	Inversion -free <mark>Q</mark>	Q = f(H _{k0} ,,H _{kk})
Lifted P(Q)	#P-hard	PTIME	PTIME or #P-hard
Grounded P(F _n (Q))	2 ^{Ω(√n)}	PTIME	2 ^{Ω(√n)}

Two Questions

- Question 1: Are the lifted rules complete?
 - We know that they get stuck on some queries
 - Should we add more rules?

Complete for "unate ∀FO" and for "unate ∃FO"

- Question 2: Are lifted rules stronger than grounded?
 - Lifted rules can also be grounded
 - Any advantage over grounded inference?

Strictly stronger than DPLL-based algorithms

∀FO^{un}, ∃FO^{un}

#P-hard

